【Python】如何用Python编写SVM算法
CrazyPanda发表于:2024-01-16 20:38:02浏览:287次
如何用Python编写SVM算法?
SVM(Support Vector Machine)是一种常用的分类和回归算法,基于统计学习理论和结构风险最小化原理。它具有较高的准确性和泛化能力,并且适用于各种数据类型。在本篇文章中,我们将详细介绍如何使用Python编写SVM算法,并提供具体的代码示例。
安装Python和相关库
在开始编写SVM算法之前,首先需要确保已经安装了Python和相关的机器学习库。推荐使用Anaconda作为Python的集成开发环境,它不仅自带了Python解释器,还包括了很多常用的科学计算和机器学习库。使用以下命令安装scikit-learn库:
pip install scikit-learn
导入所需的库
导入所需的库,包括scikit-learn、numpy和matplotlib。
import numpy as np import matplotlib.pyplot as plt from sklearn import svm, datasets
加载数据集
为了演示SVM算法的编写,我们将使用著名的Iris数据集。Iris数据集包含了150个鸢尾花样本,每个样本有4个特征。我们将数据集分为两个类别:鸢尾花的两个品种Setosa和Versicolor。
iris = datasets.load_iris() X = iris.data[:, :2] # 我们只使用前两个特征 y = iris.target
训练模型
使用SVM来训练模型,在这里我们使用线性核函数。
C = 1.0 # SVM正则化参数 svc = svm.SVC(kernel='linear', C=C).fit(X, y)
画出决策边界
为了更好地理解SVM的分类效果,我们可以画出决策边界。首先,我们创建一个网格来对整个特征空间进行采样。
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 h = (x_max / x_min)/100 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
然后,我们将这个网格作为输入特征进行预测,得到决策边界。
Z = svc.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape)
最后,我们使用matplotlib库画出样本点和决策边界。
plt.contourf(xx, yy, Z, cmap=plt.cm.Paired, alpha=0.8) plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired) plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.xticks(()) plt.yticks(()) plt.show()
完整代码示例
import numpy as np import matplotlib.pyplot as plt from sklearn import svm, datasets # 加载数据集 iris = datasets.load_iris() X = iris.data[:, :2] y = iris.target # 训练模型 C = 1.0 # SVM正则化参数 svc = svm.SVC(kernel='linear', C=C).fit(X, y) # 画出决策边界 x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 h = (x_max / x_min)/100 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = svc.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.contourf(xx, yy, Z, cmap=plt.cm.Paired, alpha=0.8) plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired) plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.xticks(()) plt.yticks(()) plt.show()
总结:
通过以上步骤,我们成功地使用Python编写了SVM算法,并且通过Iris数据集进行了演示。当然,这只是SVM算法的一个简单应用,SVM还有很多扩展和改进的方法,比如使用不同的核函数、调整正则化参数C等。希望本篇文章对你学习和理解SVM算法有所帮助。
猜你喜欢
- 【Python】如何在Python中进行数据可靠性存储和恢复
- 如何在Python中进行数据可靠性存储和恢复在开发Python应用程序时,数据的可靠性是一个非常重要的考量因素。合理的数据存储和恢复策略可以防止数据丢失、提高应用程序的稳定性。本文将介绍在Python中进行数据可靠性存储和恢复的几种常用方法,并提供具体的代码示例。数据存储的几种方式(1)文本文件存储:将数据以文本的形式存储到文件中。这种方式简单易实现,适用于小规模的数据。但是,由于文本文件存储的结构比较简单,不适用于复杂的数据结构。代码示例:def save_to_file(data,
- 【Python】学习使用matplotlib绘制不同类型图表的示例
- 使用Matplotlib绘制各类图表的实例学习引言:在数据分析和数据可视化领域,Matplotlib是一个非常强大的Python库。它提供了各种类型的图表和绘图功能,可以帮助我们更好地理解和呈现数据。本文将通过实例学习如何使用Matplotlib绘制各类图表,并提供相应的代码示例。一、折线图(Line Plot):折线图是一种常见的数据可视化方式,用于显示随时间或其他连续变量的数据趋势。下面是一个绘制折线图的简单示例:import matplotlib.pyplot as&n
- 【Python】Python中的字节编码和解码技巧有哪些?
- Python中的字节编码和解码技巧有哪些?字节编码和解码是我们在处理文本数据时常常遇到的问题。在Python中,有许多内置的函数和模块可以帮助我们进行字节编码和解码操作。本文将介绍几种常见的字节编码和解码技巧,并给出相应的代码示例。使用encode()函数进行字节编码encode()函数是Python中用于将Unicode字符串编码为字节序列的方法。它的一般用法是:字符串.encode(encoding),其中encoding是需要使用的编码格式。常用的编码格式包括UTF-8、UTF-16、AS
- 【Python】Python中的队列和栈的实现方式和使用场景有哪些?
- Python中的队列和栈的实现方式和使用场景有哪些?队列和栈是数据结构中常用的两种数据类型,它们分别具有不同的特性和使用场景。Python提供了多种实现方式来创建和操作队列(Queue)和栈(Stack)的数据结构。队列的实现方式:1.1 使用列表(List)实现队列:队列的特性通常是“先进先出”,在Python中使用列表可以简单地实现队列的功能。通过append()方法添加元素到列表的末尾,使用pop()方法从列表的开头弹出元素。示例代码如下:queue = [] &nbs
- 【Python】如何使用 Python 基于 PyQt5 第三方库,进行实现 exe 桌面应用软件开发详细教程
- 安装 PyQt5 第三方库开发环境下面直接使用pip来安装PyQt5,此处可能是pip/pip3,或者两者皆可,后面不再重复直接pip安装PyQt5,当然也可以加镜像加快安装pip install PyQt51由于Qt Designer已经在Python3.5版本从PyQt5转移到了tools,因此我们还需要安装pyqt5-toolspip install pyqt5-tools1然后键盘按下Win+S呼出Cornata主面板(搜索框),输入designe
- 【Python】Pandas数据处理技巧:简单修改列名的方法
- Pandas数据处理技巧:简单修改列名的方法在数据处理过程中,有时候我们需要修改DataFrame中的列名,以更好地反映数据的含义或满足特定的需求。Pandas提供了简单易用的方法来修改列名,本文将介绍其中的几种常用方法,并提供具体的代码示例。方法一:使用rename()函数rename()函数可以通过提供一个字典或函数来更改列名。下面是一个使用字典的示例:import pandas as pd # 创建一个示例DataFrame data&
- 【Python】Python 入门的60个基础练习
- 文章目录01-Hello World02-print 函数03-基本运算04-input05-输入输出基础练习06-字符串使用基础07-列表基础08-元组基础09-字典基础10-基本判断11-条件表达式、三元运算符12-判断练习:用户名和密码是否正确13-猜数:基础实现14-成绩分类 115-成绩分类 216-石头剪刀布17-改进的石头剪刀布18-猜数,直到猜对19-猜数,5 次机会20-while 循环,累加至 10021-while-break2
- 【Python】Pandas教程:利用该库读取Excel文件的方法
- Pandas教程:如何使用该库读取Excel文件,需要具体代码示例概述:Pandas是一个强大且灵活的数据处理和分析工具,被广泛应用于数据科学和数据处理领域。其中一个常见的应用是读取和处理Excel文件。本教程将向您展示如何使用Pandas库来读取Excel文件,并提供具体的代码示例。安装Pandas:首先,确保您已经安装了Pandas库。您可以使用以下命令在命令行中安装Pandas:pip install pandas读取Excel文件:在开始之前,确保您已经有一个Exce
栏目分类全部>