【Python】如何用Python编写SVM算法
CrazyPanda发表于:2024-01-16 20:38:02浏览:277次
如何用Python编写SVM算法?
SVM(Support Vector Machine)是一种常用的分类和回归算法,基于统计学习理论和结构风险最小化原理。它具有较高的准确性和泛化能力,并且适用于各种数据类型。在本篇文章中,我们将详细介绍如何使用Python编写SVM算法,并提供具体的代码示例。
安装Python和相关库
在开始编写SVM算法之前,首先需要确保已经安装了Python和相关的机器学习库。推荐使用Anaconda作为Python的集成开发环境,它不仅自带了Python解释器,还包括了很多常用的科学计算和机器学习库。使用以下命令安装scikit-learn库:
pip install scikit-learn
导入所需的库
导入所需的库,包括scikit-learn、numpy和matplotlib。
import numpy as np import matplotlib.pyplot as plt from sklearn import svm, datasets
加载数据集
为了演示SVM算法的编写,我们将使用著名的Iris数据集。Iris数据集包含了150个鸢尾花样本,每个样本有4个特征。我们将数据集分为两个类别:鸢尾花的两个品种Setosa和Versicolor。
iris = datasets.load_iris() X = iris.data[:, :2] # 我们只使用前两个特征 y = iris.target
训练模型
使用SVM来训练模型,在这里我们使用线性核函数。
C = 1.0 # SVM正则化参数 svc = svm.SVC(kernel='linear', C=C).fit(X, y)
画出决策边界
为了更好地理解SVM的分类效果,我们可以画出决策边界。首先,我们创建一个网格来对整个特征空间进行采样。
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 h = (x_max / x_min)/100 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
然后,我们将这个网格作为输入特征进行预测,得到决策边界。
Z = svc.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape)
最后,我们使用matplotlib库画出样本点和决策边界。
plt.contourf(xx, yy, Z, cmap=plt.cm.Paired, alpha=0.8) plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired) plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.xticks(()) plt.yticks(()) plt.show()
完整代码示例
import numpy as np import matplotlib.pyplot as plt from sklearn import svm, datasets # 加载数据集 iris = datasets.load_iris() X = iris.data[:, :2] y = iris.target # 训练模型 C = 1.0 # SVM正则化参数 svc = svm.SVC(kernel='linear', C=C).fit(X, y) # 画出决策边界 x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 h = (x_max / x_min)/100 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = svc.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.contourf(xx, yy, Z, cmap=plt.cm.Paired, alpha=0.8) plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired) plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.xticks(()) plt.yticks(()) plt.show()
总结:
通过以上步骤,我们成功地使用Python编写了SVM算法,并且通过Iris数据集进行了演示。当然,这只是SVM算法的一个简单应用,SVM还有很多扩展和改进的方法,比如使用不同的核函数、调整正则化参数C等。希望本篇文章对你学习和理解SVM算法有所帮助。
猜你喜欢
- 【Python】Django的优势与特点:为什么选择它作为Web开发框架
- Django是一个高效、健壮、易于扩展的Python Web开发框架。自从2005年问世以来,Django已经成为了很多企业级应用领域的首选框架。那么,Django为什么如此受欢迎呢?这篇文章将会深入分析Django的优势和特点,并为大家提供一些具体的代码示例。一、Django的优势易于上手Django是一个非常易于使用的框架。它提供了一个简单并易于理解的架构。因此,即使是初学者也能够快速掌握Django的基本知识。Django的API文档也非常完整,可以帮助开发者更快地学习。自带Web服务器D
- 【Python】Python中的逻辑运算符有哪些?
- Python中的逻辑运算符有哪些?Python中的逻辑运算符用于对表达式进行逻辑比较,并返回布尔值(True或False)。Python中常用的逻辑运算符有三个:and、or和not。and运算符and运算符用于检查所有操作数是否为真(True)。只有当所有操作数都为真时,and运算符返回True;否则返回False。下面是一个示例代码:a = 10 b = 20 c = 30 if a >&nb
- 【Python】Python程序用于按列对2D数组进行排序
- 当声明二维数组或二维数组时,它被视为矩阵。所以,我们知道矩阵由行和列组成。按升序或降序对属于矩阵特定列的元素进行排序的过程称为跨列对 2D 数组进行排序。让我们考虑一个算法和一个输入输出场景,以了解这个概念的确切应用。输入输出场景考虑一个二维数组。arr = [[ 7, 9, 5, 7 ], [9, 5, 9, 4], [2, 7, 8,&nbs
- 【Python】如何使用Python实现二分查找算法
- 如何使用Python实现二分查找算法?二分查找算法,也称为折半查找算法,是一种高效的查找算法。它适用于有序的数组或列表,通过将目标值与数组中间位置的元素进行比较,从而缩小查找范围。下面将介绍如何在Python中实现二分查找算法,并提供具体的代码示例。算法思路:将目标值与数组中间位置的元素进行比较;如果相等,则返回元素位置;如果目标值大于中间位置的元素,则在右半部分继续查找;如果目标值小于中间位置的元素,则在左半部分继续查找;不断将查找范围缩小一半,直到找到目标值或者查找范围为空。代码实现:下面是
- 【Python】Pandas轻松读取SQL数据库中的数据
- 数据处理利器:Pandas读取SQL数据库中的数据,需要具体代码示例随着数据量的不断增长和复杂性的提高,数据处理成为了现代社会中一个重要的环节。在数据处理过程中,Pandas成为了许多数据分析师和科学家们的首选工具之一。本文将介绍如何使用Pandas库来读取SQL数据库中的数据,并提供一些具体的代码示例。Pandas是基于Python的一个强大的数据处理和分析工具。它提供了丰富的数据结构,如Series和DataFrame,以及各种各样的功能,例如数据清洗、过滤、统计、可视化等。同时,Panda
- 【Python】pycharm如何安装Python
- 安装步骤:1、打开PyCharm并打开你的项目;2、转到"File">“Settings”;3、选择"Project">“Python Interpreter”;4、在右上角的设置窗口中,点击"+"符号添加新的解释器;5、选择"Existing interpreter";6、浏览并选择你系统中已经安装的Python解释器;7、点击"OK"即可。本教程操作系统:windows10系统、P
- 【Python】如何用Python编写K-均值聚类算法
- 如何用Python编写K-均值聚类算法?K-均值聚类算法是一种常用的数据挖掘和机器学习算法,能够将一组数据按照其属性进行分类和聚类。本文将介绍如何用Python编写K-均值聚类算法,并提供具体的代码示例。在开始编写代码之前,我们需要了解K-均值聚类算法的基本原理。K-均值聚类算法的基本步骤如下:初始化k个质心。质心是指聚类的中心点,每个数据点都会被归到与其最近的质心所代表的类别。根据每个数据点与质心的距离,将其分配到最近的质心所代表的类别。更新质心的位置,将其设置为该类别中所有数据点的平均值。重
- 【Python】Python程序将本地时间转换为GMT时间
- 当我们创建一个允许世界各地的用户预订活动的 Web 服务时,我们可能会使用此程序将每个用户的当地时间转换为 GMT,然后再将其放入数据库中。这将使不同时区的用户更容易比较和显示事件时间。不同时区的用户更容易比较和显示事件时间。在 Python 中,我们有一些内置的时间函数,如 timezone()、localize()、now() 和 astimezone(),可用于将本地时间转换为 GMT。当地时间代表当前时间,而 GMT 是通过计算本初子午线定义的。 GMT 代表格林威治标准时间,但现在称为
栏目分类全部>