注:文章内容来源于网络,真实性有待确认,请自行甄别。
已知三角形ABC内接于单位圆,且(1tanA)*(1tanB)=?
发表于:2024-10-24 00:00:00浏览:2次
问题描述:已知三角形ABC内接于单位圆,且(1tanA)*(1tanB)=?
已知三角形ABC内接于单位圆,且 (1 + tanA)*(1 + tanB)=2,,求三角形ABC面积的最大值。
因为(1 + tanA)*(1 + tanB)=2
所以 tanA + tanB = 1- tanA*tanB
所以tan(A+B) = (tanA +tanB)/(1-tanA&*tanB)= 1
即 A+B=45°,C=135°
所以AB=2R*sin135°=2*sin45°= √2
当AB一定时,AB上的高最大时,S△ABC 最大
因为AB上的高为:1-√[1-(√2/2)^2]= 1- √2/2
所以S△ABC = (1/2)* √2*(1- √2/2)= (√2-1)/2
猜你喜欢
栏目分类全部>