注:文章内容来源于网络,真实性有待确认,请自行甄别。
急~~~~谢谢麻烦快点已知:在矩形ABCD中,P为CD上一点,B
发表于:2024-10-24 00:00:00浏览:1次
问题描述:已知:在矩形AB中,P为CD上一点,BE垂直AP于点E,DF垂直AP于点F,且AE=DF,求证:四边形ABCD是正方形
已知:在矩形ABCD中,P为CD上一点,BE垂直AP于点E,DF垂直AP于点F,且AE=DF,求证:四边形ABCD是正方形
证明:由BE垂直AP于点E,可得三角形ABE为直角三角形,且角ABE+角BAE=90度
由DF垂直AP于点F,可得三角形DAF为直角三角形,且角ADF+角DAF=90度
又由矩形ABCD中,可得角DAF+角BAE=90度,从而
角BAE=角ADF 又AE=DF
所以三角形ABE与三角形DAF全等,从而AD=AB,
所以四边形ABCD是正方形。
栏目分类全部>