注:文章内容来源于网络,真实性有待确认,请自行甄别。
数学题急1Evaluatethefollowinglimitan
发表于:2024-10-24 00:00:00浏览:3次
问题描述:1 Evaluate the follog limit and indicate at
which (x,y)coordinate and for which function
is the limit the slop of the tangent.
lim{[(3+h^2)+5]-(3^2+5)}/(h)
h-〉0
2 Evaluate the following limit and indicate at
which (x,y)coordinate and for which function
is the1 Evaluate the follog limit and indicate at
which (x,y)coordinate and for which function
is the limit the slop of the tangent.
lim{[(3+h^2)+5]-(3^2+5)}/(h)
h-〉0
2 Evaluate the following limit and indicate at
which (x,y)coordinate and for which function
is the limit the slop of the tangent.
lim(√49+h-7)/(h)
h->0
3 Evaluate the following limit and indicate at
which (x,y)coordinate and for which function
is the limit the slop of the tangent.
lim[(√4+√h+5)-(√4+5)]/(h)
h->0
4 Evaluate the following limit and indicate at
which (x,y)coordinate and for which function
is the limit the slop of the tangent.
lim{[5/(9+h)]-(5/9)}/h
h->0
5 Using first principles and the formula
dy/dx=lim[f(x+h)-f(x)]/h
h->0
determine the slope of the tangent for the
following function and for the given point.
y=f(x)=x^2-4 P(-3,5)
这些题怎么做?要详细过程,谢谢大家了!
第1到第4题都是一个意思:求下列极限的值,并指出这个极限值表示哪个在哪个坐标点(x,y)的切线的斜率。
其实题中给出的极限都是从导数的定义公式得来的,用导数定义公式一套就是。
1。lim{[(3+h^2)+5]-(3^2+5)}/(h)=6,which is the slop of the tangent for function x^2+5 for point (3,14).
极限lim{[(3+h^2)+5]-(3^2+5)}/(h)=6,是函数x^2+5在(3,14)的切线的斜率。
.
2。 Lim(√49+h-7)/(h)=1/14,which is the slop of the tangent for function √x for point (49,7).
3、4一样,自己做吧。
第5题,按照导数的定义公式dy/dx=lim[f(x+h)-f(x)]/h,确定函数y=f(x)=x^2-4在P(-3,5)的切线的斜率。 其实就是用导数定义公式在该点的导数。 结果为-6
猜你喜欢
栏目分类全部>