注:文章内容来源于网络,真实性有待确认,请自行甄别。
高二不等式已知n>1且n∈正整数集,求证:以n为底的(n+
发表于:2024-10-24 00:00:00浏览:5次
问题描述:已知n>1且n∈正整数集,求证:以n为底的(n+1)的 >以(n+1)为底的(n+2)的对数。
证:log(n)(n+1)-log(n+1)(n+2)
=1/log(n+1)(n)-log(n+1)(n+2)【换成以n+1为底的对数,项目省略底数n+1】
=[1-lognlog(n+2)]/logn
lognlog(n+2)<{[logn+log(n+2)]/2}^2
={log[n(n+2)]/2}^2
=[log(n^2+2n)/2]^2
<[log(n+1)^2/2]^2=[2log(n+1)/2]^2=(2*1/2)^2=1
因此1-lognlog(n+2)/2>0,又logn>0
所以差[1-lognlog(n+2)]/logn>0
故log(n)(n+1)>log(n+1)(n+2)成立。
栏目分类全部>