注:文章内容来源于网络,真实性有待确认,请自行甄别。
计算积分∫<0,π/2>[cos2mx*ln(16(?
发表于:2024-10-24 00:00:00浏览:4次
问题描述:计算积分
∫<0,π/2>[c2mx*ln(16(cosx)^4)]dx
∫<0,π/2>[c(2mx)*ln(16(cosx)^4)]dx=
=ln16∫<0,π/2>cos(2mx)dx+4∫<0,π/2>[cos(2mx)*ln(cosx)]dx
只需要计算:
I(m)=∫<0,π/2>[cos(2mx)*ln(cosx)]dx
m=0,1,2,...
1.
m=0,
I(0)=∫<0,π/2>ln(cosx)dx=(u=π/2-x)
=∫<0,π/2>ln(sinu)du=
=(1/2)[∫<0,π/2>[ln(cosx)+ln(sinx)]dx=
=(1/4)∫<0,π/2>ln(sin2x)d(2x)-(ln2/2)∫<0,π/2>dx=
=(1/4)∫<0,π>ln(sinx)dx-πln2/4=
=(1/4)[∫<π/2,π>ln(sinx)dx+I(0)]-πln2/4=(u=π-x)=
=(1/4)[I(0)+I(0)]-πln2/4
==>
I(0)=-πln2/2.
2.
m=1,2,...
I(m)=(1/(2m)∫<0,π/2>ln(cosx)]d(sin2mx)=
=-(1/(2m)∫<0,π/2>[sinx*sin2mx/cosx]dx
J(m)=∫<0,π/2>[sinx*sin2mx/cosx]dx
I(m)=-(1/2m)J(m).
3.
J(m)+J(m+1)=
=∫<0,π/2>{sinx*[sin2mx+sin2(m+1)x]/cosx}dx=
=2∫<0,π/2>sinx*sin(2m+1)xdx=
=∫<0,π/2>cos(2m)xdx-∫<0,π/2>cos(2m+2)xdx=
=0
==>
J(2s)=J(2)=-J(2s-1)=-J(1)
J(1)=∫<0,π/2>[sinx*sin2x/cosx]dx=
=2∫<0,π/2>[sinx]^2dx=π/2
==>
I(2s)=∫<0,π/2>[cos(4sx)*ln(cosx)]dx=
=-(1/4s)J(2s)=π/(8s)
I(2s-1)=∫<0,π/2>[cos((4s-2)x)*ln(cosx)]dx=
=-(1/(4s-2))J(2s-1)=-π/(8s-4)
猜你喜欢
栏目分类全部>