注:文章内容来源于网络,真实性有待确认,请自行甄别。
高中数学已知a.b.c分别为⊿ABC三个内角A.B.C的对边,b
发表于:2024-10-24 00:00:00浏览:6次
问题描述:已知a.b.c分别为⊿AB三个内角A.B.C的对边,bcosC+根号3倍的bsinC-a-c=0
⑴求证A.B.C成等差数列
⑵若b=根号3,求2a+c的最大值
bcosC+√3bsinC-a-c=0,
由正弦定理,sinB(cosC+√3sinC)=sinA+sinC=2sin[(A+C)/2]cos[(A-C)/2],
sin[(A+C)/2]=cos(B/2)>0,
∴sin(B/2)=cos[(A-C)/2]/(cosC+√3sinC),
条件不足.
猜你喜欢
栏目分类全部>