注:文章内容来源于网络,真实性有待确认,请自行甄别。
求下列函数的导数g(x)=∫(t^3
发表于:2024-10-24 00:00:00浏览:8次
问题描述:g(x)=∫(t^3-x^3)sint dt
∫的上限是x,下限是0
g(x) = [0,x] ∫(t^3-x^3)sintdt
= [0,x]∫(t³sintdt - x³[0,x]∫sintdt
= [0,x]∫(t³sintdt + x³ct[0,x]
= [0,x]∫(t³sintdt + x³(cosx - 1)
= [0,x]∫(t³sintdt + x³cosx - x³
设函数 f(t) = t³sint 的原函数为 F(t)
则根据牛-莱公式得 g(x) = F(x) - F(0) + x³cosx - x³
对 x 求导得 g'(x) = F'(x) + (x³cosx - x³)'
= f(x) + 3x²cosx -x³sinx - 3x²
= x³sinx + 3x²cosx -x³sinx - 3x²
= 3x²(cosx - 1)
猜你喜欢
栏目分类全部>