注:文章内容来源于网络,真实性有待确认,请自行甄别。
在三角形ABC中,AB<AC,点D在AC上,且CD=AB,点E,?
发表于:2024-10-24 00:00:00浏览:13次
问题描述:,与BA的延长线相交于点G,求证:=AG
这道题目应该是这样的:
在三角形ABC中,AB<AC,点D在AC上,且有CD=AB,E、F分别是AD和BC的中点,连接EF并延长与BA的延长线相交于点G,求证:AE=AG.
做辅助线:连接BD,取BD的中点为H,连接EH、FH
所以在三角形ABD中,EH=AB/2;
三角形BCD中,FH=CD/2; 而CD=AB===>EH=FH
所以在三角形EFH是等腰三角形,角度HEF=HFE-----(1)
因为EH和FH分别是中点连接线,所以,分别平行于底边,可以推出角度AGE=HEF;HFE=AEG--(2)
把(1)和(2)并列,就可以得到角度AGE=AEG
所以三角形AGE是等腰三角形,AG=AE。
----end----
要点:题目中出现了中点,就应该马上联系到有关中点、中线的一些基本定理,就比较容易解决问题了。
栏目分类全部>