注:文章内容来源于网络,真实性有待确认,请自行甄别。
急求答案!!!!!在直角三角型ABC中,斜边BC=1,AD为BC
发表于:2024-10-24 00:00:00浏览:6次
问题描述:在直角三角型AB中,斜边BC=1,AD为BC上的高,求AD4次方/AB4次方+2AD4次方/AC4次方的最小值为?BC/DC=?
1.解:AD^4/AB^4+2AD^4/AC^4
=sinB^4+2sinC^4
=cosC^4+2sinC^4
=cosC^4+sinC^4+sinC^4
=(cosC^2+sinC^2)^2-2sinC^2*(cosC^2)+sinC^4
=1-2sinC^2*(1-sinC^2)+sinC^4
=1-2sinC^2+2sinC^4+sinC^4
=3sinC^4-2sinC^2+1
=3[sicC^2-(1/3)}^2+(2/3)
≥(2/3) 当且仅当sicC=√(1/3)时“=”号成立
-------------------------------
BC=AC/cosC;DC=AC*cosC
BC/DC=(AC/cosC)/(AC*cosC)=1/cosC^2=1/(1/3)=3
栏目分类全部>